Digesting the Indigestible

  
Move over Silicon Valley, the next big thing is microscopic! Microbes are taking over the biotech industry, contributing their unique characteristics toward a diverse array of applications, technologies and new startup ventures. From influencing personalized medicine, improving agriculture and degrading previously undegradable plastics to bioproduction of fuels and 3D printing materials, microbes have infiltrated a slew of industries. No doubt about it, microbiology is the technology buzzword of 2018.

As global plastic waste increases, science turns to specialized microbes to degrade previously non-degradable plastics. A bacterial species found growing in a plastic recycling plant, Ideonella sakaiensis 201-F6, exhibits an incredible and rarely seen ability to use the common plastic, PET, as its major energy source.

While there are 7 official codes to distinguish between plastics, set by the Society of Plastic Industries, there really are only 2 types that regularly get recycled: polyethylene terephthalate (PET, code 1)  and high density polyethylene (HDPE, code 2). PET is the most common polymer of the polyester family; it is used in a variety of materials including fibers for clothing production, containers for liquid storage, in custom forms for manufacturing processes and in combination with glass fibre for producing resins used in engineering. In 2015, it was estimated that 8 million metric tons of plastic made their way into our oceans per year, and this will only increase as disposable plastics accumulate. At this quickly increasing rate of plastic disposal, there will be twice as much plastic being added to the environment per year in 2025, resulting in a total of 40 times more plastic in the oceans than there is today.

Approximately 33.6 Million Tons of plastic were discarded in the United States in 2014, but only 9.5% of it was recycled. For some of us who are meticulous about recycling paper, plastic and glass, this number is astounding.
As bleak as our plastic waste problem seems, there may be a light at the end of the HDPE-lined tunnel.

Since the discovery of this incredible bacterium and its PETase, scientists at the University of Portsmouth have since accidently “Fined Tuned”the enzyme on the molecular level to be even more efficient, and given the enzyme added functionality to degrade PEF, an alternative form of PET. "Although the improvement is modest, this unanticipated discovery suggests that there is room to further improve these enzymes, moving us closer to a recycling solution for the ever-growing mountain of discarded plastics,” Dr. John McGeehan, one of the collaborators working on the function of PETase, told the independent in April 2018.
As the function and efficiency of this new enzyme is determined, there is new hope for our growing plastics problem. Imagine the possibility that instead of chucking a plastic water bottle in the recycling bin, you spray a bottle with PETase before putting it in a “plastic degrading” bin.

For more details go through the link: https://bacteriology.infectiousconferences.com/

The process is shown in the diagram: 








Comments

Post a Comment

Popular posts from this blog

Neisseria gonorrhoeae: Combating a Multidrug-Resistant Organism

The antibiotic that is active against drug-resistant tuberculosis:

How one bacterium inhibits predators with poison: