The antibiotic that is active against drug-resistant tuberculosis:
The antibiotic that is active against drug-resistant tuberculosis:
A naturally occurring antibiotic called kanglemycin A is effective against Mycobacterium tuberculosis, the bacteria that cause tuberculosis, even in drug-resistant strains, according to an international team of researchers who used chemistry, molecular biology, microbiology, and X-ray crystallography to show how the compound maintains its activity.
The compound, kanglemycin A, is related to the antibiotic rifampicin, according to Katsuhiko Murakami, professor of biochemistry and molecular biology at Penn State and one of leaders of the project. "Rifampicin is already part of the cocktail of antibiotics used to treat tuberculosis, but many strains of the tuberculosis-causing bacteria have developed resistance to it," Murakami said.
"Tuberculosis is the leading cause of death by infectious disease worldwide," said Murakami. "Development of rifampicin resistance in M. tuberculosis has made treatment of this disease very difficult since it extends treatment time of tuberculosis from 6 months to 2 years. Identifying new compounds that are effective against the rifampicin-resistant bacteria is incredibly important for public health."
The researchers screened a library of naturally occurring compounds from U.K. biotech company Demuris Ltd. for their ability to inhibit bacterial cell growth or prevent the production of RNA -- an essential process in all living organisms -- in bacteria. They discovered that a compound named kanglemycin A was effective at inhibiting RNA production even in rifampicin-resistant bacteria.
"Kanglemycin A is related to rifampicin, an antibiotic that functions by binding to bacterial RNA polymerase, the enzyme responsible for RNA production, and preventing it from making more RNA," said Murakami. "Understanding how kanglemycin A manages to maintain its affinity to rifampicin-resistant RNA polymerase and stay active against the drug-resistant bacteria will help to accelerate its approval for use in patients with tuberculosis."
To determine the mechanism of kanglemycin A action against rifampicin-resistant RNA polymerase, the Murakami group used X-ray crystallography to determine the three-dimensional structure of the complex of kanglemycin A bound to bacterial RNA polymerase. It was known that rifampicin binds to a groove in the RNA polymerase molecule and that mutations that change the amino-acid sequence of the RNA polymerase can prevent this binding, while maintaining the ability to produce RNA. Kanglemycin A binds to the same groove, but its structure revealed extensions that also bind just outside the groove allowing it to inhibit activity of rifampicin-resistant RNA polymerase.
"The X-ray structure actually revealed that kanglemycin A has two modifications that improve its function compared to rifampicin," said Murakami. "First, one of modifications allows it to bind just outside of the rifampicin binding pocket increasing the strength of its affinity to the RNA polymerase in rifampicin-resistant bacteria. Second, another modification actually allows kanglemycin A to stop the synthesis of RNA even earlier than rifampicin."
For more information contact:
Lucy
Tellus| Program Manager | Infectious Conference 2018
47 Churchfield Road, London, W3
6AY, United Kingdom
Please visit
our website: https://bacteriology.infectiousconferences.com
Great article the author has shared with us. Nice gain of knowledge and we are looking forward to see many more articles like this!
ReplyDeleteAll the best!
We are probably thinking that this information is useful to you
https://www.meetingsint.com/conferences/infectious-diseases
My name is hoover, my 18 year old daughter, Tricia was diagnosed with herpes 3 years ago. Since then, we have moved from one hospital to another. We tried all kinds of pills, but every effort to get rid of the virus was futile. The bubbles continued to reappear after a few months. My daughter was using 200mg acyclovir pills. 2 tablets every 6 hours and 15g of fusitin cream. and H5 POT. Permanganate with water to be applied twice a day, but all still do not show results. So, I was on the internet a few months ago, to look for other ways to save my only son. Only then did I come across a comment about the herbal treatment of Dr Imoloa and decided to give it a try. I contacted him and he prepared some herbs and sent them, along with guidance on how to use them via the DHL courier service. my daughter used it as directed by dr imoloa and in less than 14 days, my daughter recovered her health. You should contact dr imoloa today directly at his email address for any type of health problem; lupus disease, mouth ulcer, mouth cancer, body pain, fever, hepatitis ABC, syphilis, diarrhea, HIV / AIDS, Huntington's disease, back acne, chronic kidney failure, addison's disease, chronic pain, Crohn's pain, cystic fibrosis, fibromyalgia, inflammatory Bowel disease, fungal nail disease, Lyme disease, Celia disease, Lymphoma, Major depression, Malignant melanoma, Mania, Melorheostosis, Meniere's disease, Mucopolysaccharidosis, Multiple sclerosis, Muscular dystrophy, Rheumatoid arthritis Alzheimer's disease, parkinson's disease, vaginal cancer, epilepsy Anxiety Disorders, Autoimmune Disease, Back Pain, Back Sprain, Bipolar Disorder, Brain Tumor, Malignant, Bruxism, Bulimia, Cervical Disc Disease, Cardiovascular Disease, Neoplasms , chronic respiratory disease, mental and behavioral disorder, Cystic Fibrosis, Hypertension, Diabetes, Asthma, Autoimmune inflammatory media arthritis ed. chronic kidney disease, inflammatory joint disease, impotence, alcohol spectrum feta, dysthymic disorder, eczema, tuberculosis, chronic fatigue syndrome, constipation, inflammatory bowel disease. and many more; contact him at drimolaherbalmademedicine@gmail.com./ also with whatssap- + 2347081986098.
ReplyDelete